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Rigorous Model Comparison
The first step in the statistical framework—sensitivity 

analysis—determines which inputs to a given strength model 
most strongly influence the output of the model under a specific 
set of conditions, highlighting the most significant variables 
and those with little effect that can remain fixed. Shrinking the 
number of variables from the dozens or even hundreds involved 
in a strength model significantly reduces the computational cost, 
paving the way for the next step: calibration. 

After using sensitivity analysis to determine which parameters 
to vary, researchers apply Bayesian calibration, training several 
models on a subset of experimental data and quantifying how 

THE best way to understand how a material behaves 
under certain conditions is to test it. For instance, an 

engineering project may rely on understanding a material’s 
strength—its resistance to permanent deformation—across a 
range of temperatures and strain rates. Gathering all relevant 
experimental data could be challenging or even impossible  
due to the time and cost required, material availability, or  
the difficulty of recreating certain conditions in a laboratory 
setting. Researchers, therefore, rely on models informed by 
available data to predict the performance of materials at  
untested conditions. 

Lawrence Livermore National Laboratory has a vested 
interest in understanding the accuracy of these models and 
the data that feed them. Material property models play a 
foundational role in a range of Livermore’s science and 
engineering research endeavors including stockpile stewardship, 
the National Nuclear Security Administration’s program to 
ensure the safety and reliability of the nation’s nuclear stockpile. 
Materials modeler Nathan Barton explains, “As we shift 
manufacturing and design approaches to more modern methods, 
we need to quantify uncertainty to maintain confidence in our 
nuclear stockpile and our stockpile modernization activities. 
Understanding the uncertainties gives us increased confidence 
in the experimental results and the models informed by the 
experimental data.”

Led by Livermore materials scientist Jeff Florando 
and supported by the Laboratory Directed Research and 
Development (LDRD) program, Barton and other Laboratory 
statisticians, computational modelers, and materials scientists 
have been developing a statistical framework for researchers to 
better assess the relationship between model uncertainties and 
experimental data. In an earlier effort, Florando helped build 
the Material Implementation, Database, and Analysis Source 
(MIDAS), a central repository for material strength-related data 
and models. (See S&TR, January/February 2012, pp. 19–22.) 
“My role in developing MIDAS helped me realize we needed 
to do a better job understanding uncertainties in material 
strength research,” says Florando. “MIDAS helps us create 
material strength model parameterizations, but the simulations 
are deterministic—they give us an answer that is based on the 
parameters we put in them.” 

The latest framework, based on Bayesian methodology, 
allows for uncertainties to be updated as new and different 
types of strength data become available and can be used to 
determine the future experiment with the greatest potential 
to reduce uncertainty. Methods developed by the team have 
informed experimental planning efforts within the Laboratory’s 
Weapons and Complex Integration (WCI) organization as well 
as research ventures exploring how materials evolve  
and degrade.

          Building Confidence in  
Materials Modeling Using Statistics

The Livermore-developed statistical framework is intended to assess sources of uncertainty in strength model input, recommend new experiments to reduce those 

sources of uncertainty, and evaluate how existing sources of uncertainty in strength models impact physics codes that rely on those models. (Illustration by Jacob Long.)
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The posterior distribution—the outcome of Bayesian calibration—

quantifies the state of knowledge about the model parameters given the 

experimental data and the choice of the prior distribution. In these plots 

of posterior distribution based on dynamic tantalum experiments, the 

probability distributions on the diagonal represent the marginal posterior 

distributions for each parameter: the narrower the distribution, the more 

certain researchers can be of the parameter value. The off-diagonal 

pairwise plots, shown with two different plotting types above and below the 

diagonal, illustrate the correlations between the variables. In this example, 

Variables 1 and 2 have a stronger correlation compared to the other 

pairings as observed with the linear-like grouping with a positive slope in the 

corresponding off-diagonal plots, which indicates a positive correlation. 
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Building Block for Big Codes
Material strength models are typically incorporated into 

larger, more complex, and more computationally intensive 
physics codes. Understanding how uncertainty in the input 
parameters of the strength models can affect the output of 
these larger codes is a difficult task, and researchers are 
still evaluating the best path forward, making the statistical 
framework foundational, according to the team. Says statistician 
Katie Schmidt, “By improving the accuracy of our models of 
these different materials, we are creating the building blocks for 
larger and more complex models.”

Uncertainty quantification is a growing field within 
the stockpile stewardship program, and efforts are already 

underway to apply the tools and methods 
developed in this LDRD project to specific 
problems within the program as well as to 
other national security-relevant materials 
science projects. “We have seen a real and 
healthy continuation of this work in the 
program space, which is gratifying,” observes 
Barton. “Ideas from our project have helped 
inform WCI strategic planning, including 
experimental choices.” The team is also 
looking to incorporate some of their statistics 
tools into MIDAS.

A rewarding part of the project for the 
team was bringing together researchers from 
diverse disciplines—computational modeling, 
statistics, and materials science—and all 
career stages—from postdoctoral scholar to 
senior scientist. Says Schmidt, “This was 
my first project as a postdoctoral scholar at 
Lawrence Livermore. I knew nothing about 

materials science coming in, but I was able to absorb a lot. Now 
I’m working on other materials science projects.” In addition 
to Schmidt, postdocs engaged in the project include Jason 
Bernstein, David Rivera, Amanda Muyskens, Matthew Nelms, 
and William Schill. Florando adds, “This project gave me a 
deeper appreciation for statisticians and statistics. I’m thinking 
of ways to incorporate statistics into my other projects.”

—Rose Hansen

Key Words: Bayesian statistics, Laboratory Directed Research and 
Development (LDRD) program, Material Implementation, Database, 
and Analysis Source (MIDAS), material strength, stockpile stewardship, 
uncertainty quantification.

For further information contact Jeff Florando (925) 422-0698 

(florando1@llnl.gov). 

optimize experimental design decisions. Having determined 
which input parameters have the greatest influence on model 
results, researchers can shape future experiments to decrease 
uncertainty in a given parameter. Further, if model cross-
validation reveals that a model predicts poorly for a certain 
range of conditions, experiments could focus on collecting more 
data at those conditions to improve model performance. Results 
of the analysis might also suggest that the model form needs to 
be refined to better capture experimental observations. Another 
round of Bayesian calibration and cross-validation incorporating 
the additional data (or an update of the model) could help 
determine which models provide the best predictions and under 
which conditions, given the new information.

The team has incorporated statistical 
methods into the framework for evaluating, 
based on previous experimental data and 
model performance, which experiment will 
give the greatest reduction in parameter 
uncertainty. Florando says, “We can use the 
framework to help inform two important 
questions: If I had data in a different phase 
space, how would that change the answer? 
And given these choices of experiments, 
which one best reduces the overall 
uncertainty? Working with stress–strain 
curves in which we had confidence, we 
used this approach to pick the strain rate 
experiment that would best help lower the 
uncertainty.” In the future, Florando would 
like to see this approach used to discriminate 
among a more heterogeneous set of 
experiments. For instance, would it be better 
to run a higher strain rate test or a higher 
temperature test in a given context?

The team notes that while these methods will likely help 
researchers gather more useful data more efficiently, they 
may not, necessarily, need to do fewer experiments. Minor 
differences in experimental setup and some random variation in 
the results always exist. Their findings do foster a fresh outlook 
on experimental design. Statistician Ana Kupresanin explains, 
“Incorporating statistical rigor into your approaches requires 
changing methodologies and ways of thinking and questioning 
every data set you work with, even if the data comes from 
another scientist. Different parameters and materials with 
slightly different properties are involved in each experiment. 
If the goal in the experiment is to characterize variability, you 
need to collect enough, and representative enough, samples to 
make the method work. The experimental setup must be in line 
with the methodology.” 

The calibration and cross-validation element of the framework 
enables researchers to identify which of the tested strength 
models provides the most accurate predictions overall, as well 
as under specific experimental conditions. For instance, while 
all strength models in one study appeared to provide similarly 
accurate strength predictions for very high temperature conditions, 
one of the models was significantly less accurate than the others 
for room-temperature conditions. Such insights into the relative 
strengths and weaknesses of a model help researchers assess how 
confident they can be in the accuracy of that model’s output. 
Most importantly, however, the comparison helps engineers and 
scientists anticipate the accuracy of future predictions—that is, 
how well a given model will generate new strength projections 
in a certain pressure, temperature, and strain rate regime—aiding 
researchers in selecting the optimal model for a given project.

Experimental Design Enhancement
The sensitivity analysis and calibration elements of the 

statistical framework not only uncover sources of uncertainty 
in the strength models, they are also intended to help guide and 

well the trained models predict data from elsewhere in the 
data set. Each model is tested hundreds or thousands of times, 
predicting results across a range of conditions, and the models 
are ranked based on their overall prediction error. In this flexible 
framework, Florando and colleagues could, for example, combine 
the data from two experiments—one at low strain rates and the 
other at high—on the deformation of tantalum, a material of 
interest due to its stable crystal structure over a wide range of 
pressure and temperature conditions, in their initial demonstration 
to ensure sufficient coverage for model cross-validation.

To reduce computational demand, Livermore researchers 
created surrogate versions of the finite element models that 
only emulate behavior under a subset of conditions. “Often 
we are trying to replicate complex physics, which requires 
computationally expensive 3D simulations,” explains Florando. 
“So, we create a surrogate model that matches the physics data 
of the full model in a very narrow regime but runs much more 
cheaply. We can use statistical tools to do tens of thousands of 
runs with the surrogate model to explore the parameter space in 
this regime.” 

“By improving the 

accuracy of our 

models of these 

different materials, 

we are creating the 

building blocks for 

larger and more 

complex models.”

These example plots show how the sensitivity of strength parameters, represented by different colors, changes as a function of strain rate, 

temperature, and strain. Parameters with low sensitivity across the conditions of interest may be fixed rather than estimated in subsequent 

analysis, effectively reducing the dimension of the problem.
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